

World Fire Congress

2024 UNITED STATES

Structure Fire & Response: Fire Dynamics

Daniel Madrzykowski, Ph.D., PE

"Change is the only constant in life"

2012

Heraclitus, 535 – 475bce

F**ields Rd** Gaithersburg, Marvland

🕝 Google Street View

See latest da

New Materials and Construction Methods = Faster Fire Growth

- Faster fire propagation
- Shorter time to flashover
- Rapid changes in fire dynamics

- Shorter escape times
- Shorter time to collapse
- Increased exposure problems
- Emerging hazards

Lightweight engineered wood I-joist supported floors can collapse after less than 5 minutes of burning.

Floor Support Type	Ventilation Description	Time from ignition of the fuel load to collapse	Time from ignition of floor assembly due to fire spread to collapse	
Nominal Dimension 2 x 12	On-plane vent open at ignition	11:09	7:11	
Nominal Dimension 2 x 12	On-plane vent open at 8:30 after ignition	12:45	10:45	
Lightweight Engineered Wood I-Joist	On-plane vent open at ignition	6:00	<mark>2:45</mark>	
Lightweight Engineered Wood I-Joist	No vent	6:49	<mark>4:06</mark>	
Lightweight Engineered Wood I-Joist	No Vent	8:27	<mark>4:42</mark>	
Lightweight Engineered Wood I-Joist	On-plane vent open at ignition	6:49	<mark>2:29</mark>	

Recognition of ventilation limited fires

Providing oxygen to a ventilation limited fire

Understanding the flow path in a building is key to an effective fire attack.

Improved understanding of suppression tactics: gas contraction due to cooling

Hose Stream Mechanics

- Water distribution in compartments
- Air entrainment due to stream type & nozzle motion
- Water impact on fire flow & fuel surfaces

Fire Dynamics Knowledge & Hose Stream Mechanics = Effective Suppression

1 ³/₄" (45mm) Handline: 185 Gal (700 liters)

Good decisions require:

- Good information (data) from a trusted source
- Knowledge & Experience to interpret the data
- Knowledge & Experience to account for the context (the system)

Decisions on Firefighting Strategy and Tactics

- Size up is the basis of the Incident Action Plan (DATA)
- Impact of ventilation on a vent-limited fire = Increased Growth (HRR) (KNOWLEDGE & EXPERIENCE)
- Existing Flow Paths (DATA)
- Potential Flow Paths (KNOWLEDGE & EXPERIENCE)
- Fire dynamics (KNOWLEDGE) needed to understand observations (DATA)

High Energy Materials, New Construction Methods and Bigger Buildings mean that

- More fixed fire protection systems are needed
- More firefighting resources needed
- Less time to make decisions

World Fire Congress

2024 UNITED STATES

Daniel Madrzykowski, Ph.D., PE Daniel.Madrzykowski@ul.org

World Fire Congress

2024 UNITED STATES

Fire as a Global Threat: Human Factors and Consequences

Dr. Sabrina Cohen-Hatton

Chief Fire Officer, West Sussex Fire & Rescue Service NFCC Improvement Lead Hon Research Fellow, Cardiff University

> Mark Hardingham QFSM Chair, National Fire Chiefs Council

Fire as a global threat:

Human Error

80% of firefighters are injured from human error.

How Decisions Were Made

80% Intuitive

20% Analytical

Decision Control Process

2024 UNITED STATES

Fire as a Global Threat: Multi-Agency Working

Assessment, Planning and Execution

Little consideration of powers, policies, options or contingencies

Explorers and Exploiters

Some repeatedly search for information, seeking optimal option. Others take a bet to make a decision quickly, not optimally.

Pivotal Role of Chair

More understanding about nuances of individual decision making and impact on the group to avoid decision traps.

Decision Controls for Group Decision Making

Fire as a global threat: Paradoxical effects of decision making under uncertainty

Uncertainty

Emergencies are by their nature extreme. Information can be limited and uncertainty high.

Impact of stress

Stress reduces processing capacity and limits that available for processing information and making decisions.

The paradox

Uncertainty increased stress, which increased tendency to rely on rules. Even when no rules were appropriate because the situation was so novel.

References

Cohen-Hatton, S. R., Butler, P. C., & Honey, R. C. (2015). An investigation of operational decision making in situ: Incident command in the UK fire and rescue service. Human Factors, 57(5), 793-804.

Cohen-Hatton, S. R., & Honey, R. C. (2015). Goal-oriented training affects decision-making processes in virtual and simulated fire and rescue environments. Journal of Experimental Psychology: Applied, 21(4), 395.

Wilkinson, B., Cohen-Hatton, S. R., & Honey, R. C. (2019). Decision-making in multi-agency groups at simulated major incident emergencies: In situ analysis of adherence to UK doctrine. Journal of Contingencies and Crisis Management, 27(4), 306-316.

Butler, P. C., Bowers, A., Smith, A. P., Cohen-Hatton, S. R., & Honey, R. C. (2021). Decision making within and outside standard operating procedures: paradoxical use of operational discretion in firefighters. Human factors, 00187208211041860.

Wilkinson, B., Cohen-Hatton, S. R., & Honey, R. C. (2022). Variation in exploration and exploitation in group decision-making: Evidence from immersive simulations of major incident emergencies. Journal of Contingencies and Crisis Management, 30(1), 82-91.

Decision Traps

Situational Awareness

Decision Inertia

Paralysis by analysis sees decisions either not made (decision omission) or deferred (choice deferral).

Wicked Problems

Problems exist that are incomplete, are in flux, and have no right answer. Some require you to find the least worst option.

Confirmation Bias

Seeing the truth that you want rather than finding the truth that is there.

Dr. Sabrina Cohen-Hatton Chief Fire Officer, West Sussex Fire & Rescue Service NFCC Improvement Lead Hon Research Fellow, Cardiff University

World Fire Congress

2024 UNITED STATES